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This technical report discusses nuclear statistical equilibria at low temperature and
calculations with libnuceq.

1 Introduction
libnuceq is a library of C codes for computing nuclear statistical equilibria relevant to
nucleosynthesis. Libnuceq codes can compute most equilibria fairly robustly, though
they can run into difficulty at very low temperatures. Of course, equilibrium is difficult
to attain at low temperature; nevertheless, it is useful to consider these solutions.

2 Free Energy Minimization
At fixed temperature and volume (or mass density), equilibrium occurs at a minimum
in the Helmholtz free energy per nucleon f . This quantity is given by

f = ε−T s (1)

where ε is the energy per nucleon, T is the temperature, and s is the entropy per nucleon.
The energy per nucleon (assuming non-relativistic, non-degenerate particles) is

ε = ∑
i

(
3
2

kT +mic2
)

Yi, (2)

where mic2 is the rest mass energy of species i and Yi is the abundance per nucleon of
species i. The sum in Eq. (2) runs over all species, including electrons. Because of
charge neutrality in our assumed fully ionized plasma,

∑
i∈nuc

ZiYi = Ye (3)

where Ye is the net electron number per nucleon, and the sum runs only over nuclear
species. From Eq. (3), we may write

ε = ∑
i∈nuc

(
mic2 +Zimec2)Yi +

3
2

kT ∑
i∈nuc

(1+Zi)Yi, (4)
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where mec2 is the rest mass energy of the electron. If we neglect the binding energy of
electrons in an atom relative to the nuclear rest mass energy, Eq. (4) becomes

ε = ∑
i∈nuc

matomic
i c2Yi +

3
2

kT ∑
i∈nuc

Yi, (5)

where matomic
i c2 denotes the atomic rest mass energy of species i.

For classical, non-degenerate, non-interacting particles, the entropy per nucleon for
species i is given by

si =
5
2

Yi−Yi ln
(

Yi

YQi

)
(6)

where the quantum abundance YQi is

YQi =
Gi

ρNA

(
mikT
2πh̄2

)3/2

. (7)

From this, we may find

s = ∑
i∈nuc

5
2

(1+Zi)Yi− k ∑
i∈nuc

Yi ln
(

Yi

YQi

)
+ kT ln

(
Yi

YQe

)
. (8)

With Eqs. (5) and (8), Eq. (1) becomes

f = ∑
i∈nuc

matomic
i c2Yi−kT ∑

i∈nuc
(1+Zi)Yi +kT ∑

i∈nuc
Yi ln

(
Yi

YQi

)
+kTYe ln

(
Ye

YQe

)
. (9)

As kT → 0, this becomes
f = ∑

i∈nuc
matomic

i c2Yi. (10)

This result shows that, at low temperature, the system will tend to minimize the atomic
mass per nucleon.

3 Two-Species Limit
At low temperatures, nuclear equilibria, if they can be attained, are dominated by one
or two species. We consider a two species equilibrium. The conditions on a nuclear
statistical equilibrium are then 1) mass conservation and 2) charge neutrality. Mass
conservation requires

A1Y1 +A2Y2 = 1, (11)

where A1 and A2 are the mass number of species 1 and 2, respectively, while Y1 and Y2
are their abundances per nucleon. Charge neutrality requires

Z1Y1 +Z2Y2 = Ye, (12)

where Z1 and Z2 are the atomic numbers of species 1 and 2. Solution of Eqs. (11) and
(12) yield

Y1 =
1

A1

(
Y (2)

e −Ye

Y (2)
e −Y (1)

e

)
(13)
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and

Y2 =
1

A2

(
Ye−Y (1)

e

Y (2)
e −Y (1)

e

)
. (14)

In these equations,

Y (i)
e =

Zi

Ai
. (15)

The free energy is then
f = m1c2Y1 +m2c2Y2 (16)

Equilibrium occurs for the combination of two species that minimizes f for the given
Ye. If Ye of the system is equal to the Z/A ratio of one of the two species, call it species
1, then Y1 = 1/A1 and Y2 = 0, and a single species will dominate the equilibrium. The
free energy per nucleon then becomes

f =
m1c2

A1
. (17)

Figure 1: Mass fractions in a two-species, low temperature nuclear statistical equilib-
rium.

Figures 1 and 2 show the mass fractions that satisfy Eq. (16) for the mass file that
comes with the libnuceq 0.1 distribution. At Ye = 0, the system consists of only free
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Figure 2: Mass fractions in a two-species, low temperature nuclear statistical equilib-
rium.
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neutrons. As Ye increases, the system becomes a mix of free neutrons and 121Y. As
Ye increases further, the nuclei are able to lock up all the neutrons, and the system is
dominated by a mix of various species (mostly in the iron group). At certain values
of Ye, the abundances are dominated by a single species with a Z/A ratio equal to the
Ye value. As Ye increases to values greater than 0.56, the nuclei are not proton-rich
enough to lock up all the protons, and the system becomes a mix of 1H and 32Ar. 32Ar
is the winner for very proton-rich nuclear statistical equilibria because, although it does
not have a particularly large binding energy per nucleon, it is a particularly proton-rich
species and can have a large abundance in proton-rich environments. Because it is
bound, locking protons up into it reduces the overall nuclear mass per nucleon in the
system, thereby reducing the free energy. At Ye = 1, the system, of course, consists
only of free protons.

Figure 3: Atomic rest mass per nucleon relative to the neutron rest mass in a two-
species low-temperature nuclear statistical equilibrium.

Figure 3 shows the atomic mass per nucleon relative to the neutron mass a function
of Ye. Figure 4 shows the same curve but on a more restricted range in Ye. The sudden
breaks in the slope of the curve in Figure 4 are real and are due to the sudden compo-
sitional changes evident in Figures 1 and 2. The minimum atomic mass per nucleon
occurs at the Ye corresponding to 56Fe. Thus, the low-temperature system considered
here would tend to evolve by weak interactions until it consisted entirely of electrons
and 56Fe. This is somewhat surprising, given that 56Fe is not the nuclear species with
the largest nuclear binding per nucleon–62Ni is. The reason 56Fe dominates is due to
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Figure 4: Atomic rest mass per nucleon relative to the neutron rest mass in a two-
species low-temperature nuclear statistical equilibrium.
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the fact that protons are less massive than neutrons, and the lower mass from the larger
number of protons in the system dominated by 56Fe more than compensates the tighter
binding in the system dominated by 62Ni.

4 Low Temperature Calculations with libnuceq
At low temperatures, libnuceq codes will calculate the correct nuclear statistical equi-
librium, as determined by the above considerations. The difficulty will be that the
accuracy of the abundances will not be good due to the extremely large absolute values
of the neutron and proton chemical potentials. Recall that the abundance of species
i in the equilibrium depends on the exponential of the quantity Zi

µp
kT + (Ai−Zi)

µn
kT .

Numerical inaccuracies in the chemical potentials then propagate into the abundances.
Another problem occurs for low temperature calculations of weak nuclear statis-

tical equilibrium. At low temperatures, the electron chemical potential can become
extremely large during the root-finding iterations and the default calculation of the
electron number density fails.

The above problems occur for extremely low temperatures (tens of Kelvins or less),
which are not generally relevant to nuclear statistical equilibria of physical interest. At
such low temperatures, one must consider that the system may not be a plasma and
the classical expressions for nuclei are not relevant (the nuclei may become boson
condensates!). Should the user be interested is very low temperature equilibria, he
or she could extend the considerations in §3. libnuceq-based codes should be able to
handle most other cases.

7


	Introduction
	Free Energy Minimization
	Two-Species Limit
	Low Temperature Calculations with libnuceq

