
Webnucleo Technical Report: Computational
Details Behind libnuceq

Bradley S. Meyer, Tianhong Yu

December 13, 2010

This technical report describes some details of calculations in the libnuceq module.

1 Introduction
libnuceq is a library of C codes for computing nuclear statistical equilibria relevant
to nucleosynthesis. It is built on top of libxml, the GNOME C xml toolkit, gsl, the
GNU Scientific library, and the Webnucleo.org modules wn matrix, libnucnet, and lib-
statmech. Users can compute abundances in arbitrary statistical equilibria, which are
specified by an XPath expression. A well-documented API allows users to incorporate
libnuceq into their own codes, and examples in the libnuceq distribution demonstrate
the API.

2 Abundances
The starting point for libnuceq calculations is the definition of Yi, the abundance per
nucleon of nuclear species i. This is defined as

Yi =
ni

ρNA
(1)

where ni is the number density of species i, ρ is the mass density, and NA is Avogadro’s
number. We relate this to the chemical potential of species i (less its rest mass energy)
by

Yi = YQi exp
{

µ′i
kT

+ fcorr,i

}
. (2)

In Eq. (2), µ′i is the chemical potential of species i less the rest mass energy, k is
Boltzmann’s constant, T is the temperature, and fcorr,i, a term that allows for deviations
of the abundance from this expression. YQi is the quantum abundance per nucleon of
species i. It is the abundance of species i per nucleon that would obtain if there were
one particle of species i in a cube with side equal to the thermal de Broglie wavelength
of species i.

1

In arbitrary nuclear statistical equilibria, there is a relation between µi, the chemical
potential of species i and that of the neutrons µn and protons µp:

µi = Λi +Ziµp +(Ai−Zi)µn (3)

where Λi is a quantity or function we call the prefactor, Zi is the atomic number of
species i and Ai is its mass number. From Eqs. (2) and (3), we find

Yi =

YQi exp
{

Λi +Zi
µ′p
kT

+
(

Ai−Zi

)
µ′n
kT

+
Bi

kT
− (Zi fcorr,p +(Ai−Zi) fcorr,n− fcorr,i)

}
.

(4)
In this equation, the binding energy Bi is

Bi = Zimpc2 +(Ai−Zi)mnc2−mic2, (5)

where mpc2, mnc2, and mic2 are the rest mass energies of the proton, neutron, and
species i, respectively.

3 Calculation of the Equilibria
To solve for equilibria, we must satisfy certain abundance constraints. The first, and the
one always relevant under conditions in which the nucleon rest mass energy is much
greater than kT , is that nucleon number is conserved:

∑
i

AiYi = 1 (6)

where the sum runs on all nuclear species. The remaining constraints depend on the
particular equilibrium considered.

1. The least constrained equilibrium is weak nuclear statistical equilibrium (WSE).
Here Λi = 0 and, if we assume zero chemical potential for all neutrinos,

µp +µe = µn (7)

This allows us to write

µ′e = µ′n−µ′p +
(
mnc2−mpc2−mec2) (8)

Since we generally use atomic rather than nuclear masses, this becomes, upon
neglect of the binding energy of the electron in the H atom,

µ′e
kT

=
µ′n
kT

−
µ′p
kT

+

(
mnc2−m1Hc2

)
kT

(9)

The additional constraint on WSE is that the abundances must satisfy charge
neutrality:

∑
i

ZiYi = Ye (10)

2

where Ye is the net number of electrons per nucleon and the sum again runs over
nuclear species. We note that for WSE, Ye is not fixed; rather, it is a function
of T and µe/kT . The consequence is that we must simultaneously find the roots
µn/kT and µp/kT of the equations

f1 = ∑
i

AiYi−1 (11)

and
f2 = ∑

i
ZiYi−Ye (12)

where the abundances are computed from Eq. (4) with Λi = 0 and Ye is computed
from the electron chemical potential in Eq. (9).

To solve Eqs. (11) and (12) with libnuceq, one first creates an equilibrium with
Libnuceq new(). The input to this routine is a Libnucnet Nuc structure, which
contains the relevant nuclear data. Libnuceq new() returns a pointer to an equi-
librium structure. To solve for the WSE at a particular temperature and density,
one calls Libnuceq computeEquilibrium(), which takes as input the pointer to
the equilibrium and the temperature and density at which to compute the abun-
dances.

libnuceq solves Eqs. (11) and (12) as nested one-dimensional root problems us-
ing the Brent solver gsl root fsolver brent in the GNU Scientific Library. We
choose nested 1-d roots because it is possible to bracket the roots and thus guar-
antee a solution. Two-d methods are faster but require a good initial guess. We
have opted for robustness over speed. Once the equilibrium has been found, the
user may access the results using API routines to get abundances for species or
chemical potentials for neutrons, protons, or electrons.

The default routine to compute Ye from µ′e/kT is that for fully relativistic, non-
interacting electrons. Should the user wish to employ a different equation of state
for the electrons, he or she can do so by writing a Libstatmech Fermion Function
and/or a Libstatmech Fermion Integrand for the electron number density. Once
these are written, the user then sets them with Libnuceq updateUserElectronNumberDensity(),
which has the prototype

Libnuceq__updateUserElectronNumberDensity(
Libnuceq *self,
Libstatmech__Fermion__Function my_function,
Libstatmech__Fermion__Integrand my_integrand,
void *p_function_data,
void *p_integrand_data

);

Here sel f is a pointer to the equilibrium that will use the number density function
my function and the number density integrand my integrand. p function data
and p integrand data are pointers to user-defined extra data for the function and
the integrand. The default calculation for the electron number density is that for

3

default libstatmech calculations (non-interacting fully relativistic electrons). If
either the function or integrand is set, it will be used in place of the default. To re-
store the default, the user simply calls Libnuceq updateUserElectronNumberDensity()
with NULL for the function, integrand, and data.

2. The next equilibrium is regular nuclear statistical equilibrium (NSE). Here we
assume weak reactions are slow so that the electron fraction does not vary. To
compute NSE, then, one again solves Eqs. (11) and (12) but for specified Ye.
In libnuceq, one does this by calling Libnuceq setYe() before computing the
equilibrium. This routine takes as input the pointer to the equilibrium and the
value of the particular Ye at which to compute the NSE. libnuceq then uses the
user-specified value of Ye in Eq. (12). To clear the Ye constraint (and thereby
restore the equilibrium to a WSE), one calls the routine Libnuceq clearYe().
After the equilibrium has been computed, the user may call API routines to get
abundances and chemical potentials.

3. A quasi-statistical equilibrium (QSE) is one for which there is an extra constraint
on some subset of nuclei. The most common QSE occurs when the number
of heavy nuclei becomes a fixed number because the three-body reactions that
assemble them from 4He nuclei become slow (e.g., [1]). The chemical potential
for heavy nuclei thus have a uniform shift from their usual NSE relation such
that Λi = µh/kT for all heavy nuclei i, where µh is a chemical potential for the
heavy nuclei as a whole.

To compute a QSE with libnuceq, one defines the relevant “cluster”, that is, the
subset of nuclei with the same µh. These nuclei are in equilibrium under the
exchange of neutrons and protons. To create equilibrium cluster, the user first
creates an equilibrium as in §1 and 2 and then creates a cluster with the routine
Libnuceq newCluster(), which has the prototype

Libnuceq__Cluster *
Libnuceq__newCluster(
Libnuceq *self,
const char *s_cluster_xpath

);

Here sel f is the equilibrium that will include the cluster and s cluster xpath is
an XPath expression that defines the cluster using Libnucnet Nuc variables. For
example, one could define the QSE cluster of all heavy nuclei to be carbon iso-
topes and above; thus, one could include this cluster in the equilibrium pointed
to by p my equilibrium by calling

p_cluster =
Libnuceq__newCluster(
p_my_equilibrium,
"[z >= 6]"

);

4

This routine creates the cluster within p my equilibrium and returns a pointer
to it. The pointer to the cluster may subsequently be retrieved by calling Lib-
nuceq getCluster(), which gets the cluster by the defining XPath expression.
For example, one would retrieve the heavy nuclei cluster above by calling:

p_cluster =
Libnuceq__getCluster(
p_my_equilibrium,
"[z >= 6]"

);

Once a cluster is defined, the user then sets the constraint on the function by call-
ing Libnuceq Cluster updateConstraint(). The default constraint on a cluster
is that the abundances of species within the cluster sum up to a particular value.
Thus, for example, if the sum of heavy nuclei is Yh = 0.01, one would call

Libnuceq__Cluster__updateConstraint(p_cluster, 0.01);

When we solve for the equilibrium, libnuceq will simultaneously solve Eqs. (11),
(12), and

f3 = ∑
i∈C

Yi−Yh (13)

for the roots µ′n/kT , µ′p/kT and µh/kT . In Eq. (13) the sum extends only over
species contained in cluster C. Again, once the equilibrium has been computed
abundances and chemical potentials, including the chemical potential of the clus-
ter, may be retrieved with API routines.

It is possible to define multiple clusters–one simply calls Libnuceq newCluster()
for each cluster and sets the constraint on each. It is important to note that clus-
ters should not overlap, that is, a species should not belong to more than one
cluster. Also, clusters should not include neutrons and protons.

4. A restricted NSE is one for which the NSE extends only over a subset of nuclei.
The cluster (subset) C that does not include the neutrons and protons, then, has a
Λi = Aiµr/kT and a cluster constraint equation

f3 = ∑
i∈C

AiYi−Xr (14)

where Xr is the mass fraction of species contained within C. Here both the pref-
actor Λi and the constraint function Eq. (14) differ from the defaults. To spec-
ify a different prefactor, the user writes a Libnuceq Cluster prefactorFunction,
which has the prototype

double
my_prefactor_function(
Libnuceq__Cluster *p_cluster,
Libnuceq__Species *p_species,
void *p_my_prefactor_data

);

5

where p cluster is the cluster to which the prefactor function is applied, p species
is the particular nuclear species i, and p my pre f actor data is a pointer to user-
defined extra data to the function. The user can then write a Libnuceq Cluster constraint function,
which has the prototype

double
my_constraint_function(
Libnuceq__Species *p_species,
void *p_my_constraint_data

);

The names my prefactor function and my constraint function are for illustration–
the user may choose different names that make sense to him or her.

Once the prefactor and constraint functions are written, the user then sets them
for an equilibrium with the API routines Libnuceq Cluster updatePrefactorFunction()
and Libnuceq Cluster updateConstraintFunction(). For the examples above,
the calls would be, for a cluster p my cluster,

Libnuceq__Cluster__updatePrefactorFunction(
p_my_cluster,
Libnuceq__Cluster__prefactorFunction my_prefactor_function,
p_my_prefactor_data

);

and

Libnuceq__Cluster__updateConstraintFunction(
p_my_cluster,
Libnuceq__Cluster__constraint_function my_constraint_function,
p_my_constraint_data

);

Now when the equilibrium is computed, libnuceq calculates the prefactor and
constraint from the user’s functions.

Examples in the libnuceq distribution illustrate how to compute equilibria and to
set constraints.

4 Setting Correction Factors
libnuceq allows users to correct abundances for deviations (fcorr,i) away from the sim-
ple relation that Yi = YQi exp(µ′/kT). The correction is computed by a user-defined
Libnucnet Species nseCorrectionFactorFunction. The prototype for this function is
(see libnucnet documentation for further details)

6

double
my_corr_function(
Libnucnet__Species *p_species,
double d_t9,
double d_rho,
double d_ye,
void *p_nse_corr_data

);

Here d t9 is the temperature in 109 K, d rho is the mass density in g/cc, d ye is the
electron fraction Ye, and p nse corr data is a pointer to user-defined extra data for the
function. The user writes this function and then sets it for a particular equilibrium with
Libnuceq setNseCorrectionFactorFunction(), which has the prototype

void
Libnuceq__setNseCorrectionFactorFunction(
Libnuceq *p_my_equilibrium,
Libnucnet__Species__nseCorrectionFactorFunction my_corr_function,
void *p_nse_corr_data

);

Now when libnuceq computes the equilibrium, it will compute fcorr,i for each species
from the user’s correction factor function (in the above example, my corr function).
Note that libnuceq will call the correction factor function with the temperature and
density set by the user in calling Libnuceq computeEquilibrium() and the current
Ye for the equilibrium (whether set by the user with Libnuceq setYe() or computed
from µ′e/kT). To restore the default (no correction factor function), the user calls Lib-
nuceq clearNseCorrectionFactorFunction(). Examples in the libnuceq distribution il-
lustrate how to do this.

References
[1] B. S. MEYER, T. D. KRISHNAN, AND D. D. CLAYTON, Theory of quasi-

equilibrium nucleosynthesis and applications to matter expanding from high tem-
perature and density, ApJ, 498 (1998), pp. 808–830.

7

	Introduction
	Abundances
	Calculation of the Equilibria
	Setting Correction Factors

